Proportion of true null p-values
pi0est.Rd
Estimates the proportion of true null p-values, i.e., those following the Uniform(0,1) distribution.
Arguments
- p
A vector of p-values (only necessary input).
- lambda
The value of the tuning parameter to estimate \(\pi_0\). Must be in [0,1). Optional, see Storey (2002).
- pi0.method
Either "smoother" or "bootstrap"; the method for automatically choosing tuning parameter in the estimation of \(\pi_0\), the proportion of true null hypotheses.
- smooth.df
Number of degrees-of-freedom to use when estimating \(\pi_0\) with a smoother. Optional.
- smooth.log.pi0
If TRUE and
pi0.method
= "smoother", \(\pi_0\) will be estimated by applying a smoother to a scatterplot of \(\log(\pi_0)\) estimates against the tuning parameter \(\lambda\). Optional.- ...
Arguments passed from
qvalue
function.
Value
Returns a list:
- pi0
A numeric that is the estimated proportion of true null p-values.
- pi0.lambda
A vector of the proportion of null values at the \(\lambda\) values (see vignette).
- lambda
A vector of \(\lambda\) value(s) utilized in calculating
pi0.lambda
.- pi0.smooth
A vector of fitted values from the smoother fit to the \(\pi_0\) estimates at each
lambda
value (pi0.method="bootstrap" returns NULL).
Details
If no options are selected, then the method used to estimate \(\pi_0\) is the smoother method described in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor & Siegmund (2004). A closed form solution of the bootstrap method is used in the package and is significantly faster.
References
Storey JD. (2002) A direct approach to false discovery rates. Journal
of the Royal Statistical Society, Series B, 64: 479-498.
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00346/abstract
Storey JD and Tibshirani R. (2003) Statistical significance for
genome-wide experiments. Proceedings of the National Academy of Sciences,
100: 9440-9445.
Storey JD. (2003) The positive false discovery rate: A Bayesian
interpretation and the q-value. Annals of Statistics, 31: 2013-2035.
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aos/1074290335
Storey JD, Taylor JE, and Siegmund D. (2004) Strong control,
conservative point estimation, and simultaneous conservative
consistency of false discovery rates: A unified approach. Journal of
the Royal Statistical Society, Series B, 66: 187-205.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2004.00439.x/abstract
Storey JD. (2011) False discovery rates. In International Encyclopedia of Statistical Science.
http://genomine.org/papers/Storey_FDR_2011.pdf
http://www.springer.com/statistics/book/978-3-642-04897-5